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(57) ABSTRACT

An embodiment can include one or more computer-readable
media storing executable instructions that when executed on
processing logic process variable signals. The media can
store one or more instructions for receiving executable code
that includes constructs with variable signals for processing
the variable signals, and for performing a coverage measure-
ment on the executable code based on information about one
or more of the variable signals processed by the executable
code. The media can store one or more instructions for pro-
ducing a coverage result based on the coverage measurement,
the coverage result identifying a degree of coverage for the
executable code when the executable code processes the vari-
able signals.
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1
COVERAGE ANALYSIS FOR VARIABLE SIZE
SIGNALS

RELATED APPLICATIONS

This application is a divisional of U.S. patent application
Ser. No. 12/475,215, filed May 29, 2009, which claims the
benefit of U.S. Provisional Patent Application No. 61/080,
578, filed Jul. 14, 2008, the contents of which are incorpo-
rated by reference herein.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one or
more embodiments of the invention and, together with the
description, explain the invention. In the drawings,

FIG. 1 illustrates an exemplary model that can be used to
practice an embodiment;

FIG. 2 illustrates an exemplary model component that can
receive variable size/dimension signals;

FIG. 3 illustrates the exemplary block of FIG. 2 along with
examples of variable size/dimension signals that can be used
with the block;

FIG. 4 illustrates a flow chart of exemplary processing that
can be used to execute code that processes variable size/
dimension signals in a model;

FIG. 5 illustrates a flow chart of exemplary processing that
can be used to instrument the code of FIG. 4;

FIGS. 6-8 illustrate exemplary user interfaces that can be
used to practice embodiments of the invention described
herein;

FIG. 9A illustrates an exemplary user interface for display-
ing information about variable size/dimension signals;

FIG. 9B illustrates an example of a signal that can vary in
size; and

FIG. 10 illustrates an exemplary embodiment for perform-
ing distributing processing of variable size/dimension sig-
nals.

DETAILED DESCRIPTION

The following detailed description of implementations
consistent with principles of the invention refers to the
accompanying drawings. The same reference numbers in dif-
ferent drawings may identify the same or similar elements.
Also, the following detailed description does not limit the
invention. Instead, the scope of the invention is defined by the
appended claims and their equivalents.

Overview

Exemplary embodiments can perform code coverage
analysis on executable code that handles variable input data,
such as variable size or dimension signals. Signals can be
values that are communicated, such as from a source block to
a destination block in a graphical model. Exemplary embodi-
ments can further perform coverage analysis of models with
variable signals, of code used to implement components of a
model (e.g., blocks), to relate model coverage to code and/or
to relate code coverage to a model. Embodiments described
herein can perform coverage analysis for block diagram mod-
els, time-based models, event-based models, state-based
models, data flow models, component diagrams, equation
based language diagrams, text-based models, etc.

Coverage analysis refers to techniques that indicate the
completeness and consistency of a set of requirements. Code
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coverage and model coverage are two coverage analysis tech-
niques that can be used to perform coverage analysis of pro-
gramming code or executable models. Code coverage ana-
lyzes the way a program executes and provides a measure of
completeness of testing based on the code structure of a
program being analyzed. Robust code coverage may include
statement coverage, decision coverage and/or condition cov-
erage. Modified condition-decision coverage (MC/DC) can
be used when more rigorous analysis of conditions in a pro-
gram are analyzed. MC/DC coverage may imply that each
input of a logical expression has been shown to independently
change the expression outcome while the other conditions are
held constant.

Model coverage analyzes the way a model executes. Model
coverage may strive to provide the equivalent information of
code coverage in the context of an executable model, such as
an executable graphical model, as the model simulates.
Model coverage may analyze the control flow within a model
and may dynamically update coverage data for components
of'a model when the objects representing the components are
instantiated. Full model coverage may occur when all pos-
sible outcomes for components of the model occur. Code
coverage and model coverage may use test cases to exercise
the code/model when performing coverage analyses. Full
code or model coverage may require that test cases cause all
possible outcomes of the code or model to occur.

By way of example, a graphical model may include a block
that can process input data that varies in size and/or dimen-
sion (e.g., along a dimension or by changing the number of
dimensions). At one sample time the input data may have
dimensions of 2x2 and at another sample time the input data
may have dimensions of 3x3, where the block can process the
2x2 input data or the 3x3 input data. As another example, at
one sample time the input may have dimensions of 2x2 and at
another sample time the input data may have dimensions of
2x2x3, where the block can process the 2x2 input data or the
2x2x3 input data.

In some situations it may be desirable to build excess
capacity into the model. For example, it may be determined
that likely input signals may have sizes and/or dimensions of
1x1, 2x2 and 3x3. A designer may configure the model to
handle signals as large as 4x4 or 5x5 so that the model has
excess capacity. As another example, a designer may config-
ure the model to handle signal sizes/dimensions by account-
ing for the maximum total number of entries in the signal. As
such, a signal with dimensions 2x3 may have the same size as
a signal with dimensions 3x2. The configured extra capacity
may prevent the model from having to be redesigned if a user
later decides that it is desirable to run the model with signals
that exceed 3x3 but that are less than or equal to 5x5. In some
embodiments, signal sizes and/or dimensions may change
based on computed values in a model or in executable code
produced from a model (e.g., generated code). In addition, a
model can be configured to allow signal sizes/dimensions to
change as the model executes.

In an embodiment, coverage analysis may be performed.
For example, coverage analysis can be performed at a model
level (e.g., on semantics of a block) or on executable code
(e.g., on executable code for a block in a model). Embodi-
ments may further produce coverage analysis outputs, such as
reports, displays, files, etc., that include information that
identifies how the model and/or executable code performed
against a variable size/dimension input signal. The coverage
outputs may be used to reconfigure the model, reconfigure
code for the block in the model, reconfigure code generated
from the block/model, superimpose coverage information
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onto the block/model, to link coverage data to elements in the
model (e.g., executable blocks in a model), etc.

Exemplary Model

FIG. 1 illustrates an exemplary graphical model that can
include a block that processes input data of varying size/
dimension. FIG. 1 may include computer 102, graphical
model 110, source block 115, saturation block 120, and sub-
system 125. Computer 102 may further include executable
code 130, instrumentation code 135, instrumented code 140,
and coverage output 145. The embodiment of FIG. 1 is illus-
trative and other embodiments can be configured in other
ways. For example, other embodiments may include other
blocks of varying type and/or quantity, may include textual
modeling code in addition to, or instead of, graphical model-
ing components (e.g., block 120), may have a different model
structure, etc. In an embodiment, an example of a textual
model may be a model implemented the MATLAB® pro-
gramming language by The MathWorks Inc., of Natick Mass.

Computer 102 may include a device that performs process-
ing operations, display operations, communication opera-
tions, etc. For example, computer 102 may include logic, such
as one or more processing or storage devices, that can be used
to perform and/or support processing activities on behalf of a
user. Embodiments of computer 102 may include a desktop
computer, a laptop computer, a client, a server, a mainframe,
a personal digital assistant (PDA), a web-enabled cellular
telephone, a smart phone, smart sensor/actuator, or another
computation or communication device that executes instruc-
tions to perform one or more activities and/or to generate one
or more results.

Graphical model 110 may include code that facilitates
simulating a physical system. Model 110 may be imple-
mented in an environment executing on computer 102, such
as a simulation and modeling environment. Model 110 may
include source block 115 that can generate one or more sig-
nals having varying sizes and/or dimensions. Source block
115 may be coupled to saturation block 120 and may provide
saturation block 120 with input signals that vary. Signals used
with exemplary embodiments can be floating point, fixed
point, integer, Boolean, enumerations, entity flow, token flow,
state transitions, message communications, function calls,
triggers, interrupts, assembly connectors, etc. Embodiments
of model 110 can include time-based models, state-based
models, event-based models, data flow models, etc., without
departing from the spirit of the invention.

Saturation block 120 can include code that implements a
saturation function, where the saturation function may pass
signals that are within a determined range. For example,
saturation block 120 may have a range 126 that is defined by
a lower limit 122 and an upper limit 124. An input signal
received from source block 115 that is between the lower limit
122 and the upper limit 124 may be made available to sub-
system 125. In contrast, an input signal that is below the lower
limit 122 or that is above the upper limit 124 will be replaced
by an output value at either the lower limit or the upper limit,
respectively.

Subsystem 125 may include two or more blocks that share
a relationship. For example, a signal output from saturation
block 120 may be used by multiple down stream blocks to
perform one or more operations. It may be desirable to reduce
the number of blocks that are visible to a user to make model
110 easier for the user to understand. Subsystem block 125
may simplify model 110 by allowing a user to visually rep-
resent a group of blocks using a single icon, such as a sub-
system block 125. This subsystem block 125 may, in turn, be
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4

considered a primitive block that executes as an atomic unit at
a level in an execution hierarchy. In an embodiment, sub-
system block 125 may also be for graphical purposes only.
i.e., without having execution semantics such as, for example,
atomic execution of all or select parts of its content.

Model 110 may be translated into executable code 130.
When executable code 130 is executed, functions imple-
mented by model 110 (e.g., functions performed by source
block 115, saturation block 120 and/or subsystem block 125)
may be performed. In certain situations, it may be desirable to
gather information about executable code 130 as the code
executes. For example, it may be desirable to determine
whether code for saturation block 120 is run against all input
signal sizes/dimensions and/or input conditions that are
expected, or specified, for model 110. In an embodiment, the
executable code may be generated code and can be C code,
C++ code, SystemC code, ADA code, Java code, Structured
Text, a hardware description language code, such as VHDL,
FORTRAN code, Verilog code, a concurrent language code,
such as Erlang, etc.

In an embodiment, model 110 may be translated into
executable code 130. This executable code 130 can be aug-
mented with additional code that gathers information about
executable code 130 while executable code 130 operates, i.e.,
executes. For example, the additional code (herein referred to
as instrumentation code 135) may gather information that
determines or indicates whether lower limit 122 was evalu-
ated to determine whether a given input signal was below
lower limit 122 and/or whether the input signal was above
lower limit 122. In addition, instrumentation code 135 may
gather information that determines or indicates whether
upper limit 124 was evaluated to determine whether a given
input signal was below upper limit 124 or above upper limit
124.

In an embodiment, executable code 130 and instrumenta-
tion code 135 may reside in separate data structures (e.g.,
files). However, in other instances, it may be desirable to
combine executable code 130 and instrumentation code 135
into a single file. For example, instrumented code 140 may be
produced in situations where executable code 130 is com-
bined with instrumentation code 135. In an embodiment,
instrumented code 140 may include executable code 130 that
is rewritten to include instrumentation code 135. In this
embodiment, instrumentation code 135 may collect informa-
tion about the performance of executable code 130. For
example, executable code 130 can be rewritten to include
coverage instrumentation blocks, where the coverage blocks
acquire information about how saturation block 120 performs
when instrumented code 140 is executed.

When instrumented code 140 is executed, a coverage out-
put 145 may be produced. Coverage output 145 may include
information that indicates whether executable code 130
achieved a desired degree of coverage for a sequence of input
data. For example, a user may set a code coverage goal of 90%
for executable code 130. The user may execute instrumented
code 140 and coverage output 145 may indicate whether
executable code 130 achieved the coverage goal 0 90%. In an
embodiment, coverage output 145 may be displayed, stored,
or transmitted to a destination.

Example of Instrumented Code

An example is provided below to further illustrate a tech-
nique for using instrumented code 140 to perform code cov-
erage recording for executable code 130. Assume that a frag-
ment of C code may be represented as:
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1 int some_function(int a, int b, int ¢)

if (a<b) {
return(l);

}else {

return(0);

[ IR I NV R NV )
—~

9 int covData[ ] = {0, 0,0,0,0,0,0};
10 void cov_count(int x)

114
12
131}

covData[x]++;

Here the expression a<b may be evaluated and when the
expression is true, a 1 is returned. Otherwise a 0 may be
returned. When coverage analysis is performed on this code
fragment, it may be desirable to test both the true condition
that produces 1 and the false condition that produces 0. In this
example, a coverage point may be the value of the condition
a<b, where the condition can be true or false as a program
executes. For this example, a possible coverage data structure
may be represented as:

struct condCovInfo

29

3 unsigned int trueCount;
4 unsigned int falseCount;

5}

Here the coverage data structure can be used to record
information about the C code fragment, above, as the code
fragment executes. The coverage data structure may include
an occurrence count that counts the number of times the
expression a<b is evaluated true and a separate occurrence
count for the number of times the expression has evaluated as
false. Here a pair of unsigned integers are used to record the
occurrences of whether a<b evaluates as true or false.

When the fragment of C code is instrumented it may be
represented as:

1 int some_function(int a, int b, int ¢)
24

3 cov_count(3); if (a<b) {

4 cov_count(4); return(1);
5 Jelse{

6 cov_count(6); return(0);
7

8}

Embodiments can support code coverage and/or model cov-
erage. For example, a model may include a block, such as
saturation block 120, and coverage values for the block at the
model level may differ from coverage values for code that
implements the block. At the model level, coverage may only
apply to the three regions in which the saturation block oper-
ates (above the upper limit, below the lower limit, and
between the lower and upper limit). For the code that imple-
ments saturation block 120, different coverage may apply.
For example, code that implements saturation block 120 may
be written in a number of ways, such as:
If (u>ul) then
Else

If (u<ul) then

If w>1l then

Else

Endif
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Endif

or

If (u>ul) then

Endif

If (u<1l) then

End if

If (u<ul && v>ul) then

End if

Still other embodiments can express code for a saturation
block in still other ways without departing from the spirit of
the invention. A code coverage result for one way of express-
ing the code for saturation block 120 may difter from a code
coverage result for code expressed in another way that imple-
ments saturation block 120. Reasons for the difference can
include, but are not limited to, degrees of nesting for decision
points in code, commands used to represents block opera-
tions, functions used to represent block operations, condi-
tions that comprise decision points, disjunctive or conjunctive
clauses, etc. Exemplary embodiments can perform code cov-
erage at the model level and/or at the level of code used to
implement the model.

In the code examples provided above, the instrumentation
code does not change the behavior of the original C code
fragment. The instrumentation code does, however, add cov-
erage data structures that are updated to indicate the behavior
of the coverage points in the code design.

Alternative embodiments may utilize other techniques for
acquiring coverage information about executable code with-
out departing from the spirit of the invention.

Exemplary Configuration

FIG. 2 illustrates an exemplary configuration for saturation
block 120 and a sequence of input data 200 that can be used
with saturation block 120. In FIG. 2, saturation block 120
may be provided with an input that can take on different sizes
and/or values. For example, a signal may have values and
dimensions that can vary, e.g., varying over time. Assume that
U is a signal that can be input to a block, such as a saturation
block, with elements U[i]. U may take on different values,
suchas whereicanbe {1,2,3...n}. Inanembodiment, a first
value of U, e.g., U[1] may occur at a first sample time in a
model and a second value of U, e.g., U[2] may occur at a
second sample time in the model. The signal U may also have
dimensions that can vary for respective values of the signal.
For example, U may have dimensions that can vary from 0 to
D, which may be a possible d-tuple.

Referring to FIG. 2, saturation block 120 may be executed
ata certain rate, e.g., a sample rate. For each sample time, the
size and/or dimension of an input signal, denoted as N, may
vary from a lower bound to an upper bound. For example, the
value of N may have a static upper bound of 5, and N may be
allowed to have values from 1 to the upper bound, namely 5.
Here N may take on the values of 1, 2, 3, 4, or 5 as shown in
210. The value of N may be a tuple. Embodiments can also
represent signals using an indicator for size and one for a
dimension of a signal. For example, a signal with a size of 12
may have dimensions of 2x6 or 2x2x3.

Saturation block 120 may have values associated with
upper limit 124 (UL 124) and/or lower limit 122 (LL 122). In
FIG. 2, UL 124 may be assigned a value of 3 (element 220 in
FIG. 2) and L1. 122 may be assigned a value of O (element 230
in FIG. 2). Saturation block 120 may make an input value
corresponding to N available at its output when N is within a
determined range (e.g., range 126), namely between 0 and 3.
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In an embodiment, values and other information related to
saturation block 120 may be stored in a computer-readable
data structure 250.

When saturation block 120 is tested, testing may need to be
performed at several coverage points 240. By way of
example, for each value of N, such as N=1, several determi-
nations may need to be performed. For example, the determi-
nation may evaluate whether:

U(N) is less than the upper limit (UN)<UL 124),

U(N) is greater than the upper limit (U(N)>UL 124),

U(N) is less than the lower limit (UN)<LL 122), or

U(N) is greater than the lower limit (U(N)>LL 122).
Therefore, for each value of N, four coverage points may need
to be tested. Phrased another way, for an input signal V that
can have one or more elements, referred to using i, where
i=1 ... N, coverage points in the above example can be:

V({H)<UL

V(@{H>UL

V(@E>LL

V(@{H<LL.

In this example, the number of coverage points can vary
during coverage analysis and the value of the signal may be
tested against these coverage points.

When model coverage analyses are performed with respect
to saturation block 120, 100% coverage may be obtained
when all four determinations are made for each value of N.
Acceptable coverage scores may vary depending on how code
for model 110 will be used. For example, when model 110
will be used for a noncritical application, coverage scores
below 100 percent may be acceptable, e.g., a coverage score
of 60% may be acceptable. In contrast, for critical applica-
tions, such as safety critical applications, a coverage score
below 100% may be unacceptable.

Under ideal circumstances, all elements in N may be tested
against all possible coverage points 240 so that coverage
results for saturation block 120 will be 100%. However, in
some situations it may not be practical to test all possible
values of N with respect to model 110. For example, instru-
mented code 140 may use large amounts of memory to store
coverage information, which may impede efficient collection
of coverage data. Moreover, running model 110 numerous
times against each possible value of all elements in N, and
confirming that all coverage points are tested may be very
time consuming and/or expensive, which may further dis-
courage complete code testing.

In situations where performing complete code coverage
testing is not practical, exemplary embodiments may allow
instrumented code 140 to be tested against a subset of pos-
sible values for N. That is, for a given range of input values
that model 110 can handle, model 110 will be tested using a
subset of the entire range of input sizes and/or dimensions.

Variable Input Data

FIG. 3 illustrates an embodiment of saturation block 120
that can accept input data (N). In an embodiment, N may
represent an mxn array, where “m” identifies a number of
rows and “n” identifies a number of columns for the array. For
example:

N may have a number of columns that vary from one

sample time to the next (310, FIG. 3):
e.g., at a first sample time, N may be a 3x1 array and at
a second sample time, N may be a 3x2 array;
N may have a number of rows that vary from one sample
time to the next (320, FIG. 3)
e.g., at a first sample time, N may be a 4x1 array and, at
a second sample time, N may be a 2x1 array; or
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N may have a number of rows and columns that vary from
one sample time to the next (330, FIG. 3):
e.g., at a first sample time, N may be a 2x1 array and, at
a second sample time, N may be a 3x2 array.
Other embodiments can include input data (N) having other
dimensional arrangements. In fact, exemplary embodiments
can be used to perform coverage analysis for executable code
or for a model that accepts input data having substantially any
number of dimensions (e.g., 0. .. n-1), where the dimensions
can vary from one piece of input data to another piece of input
data. In exemplary embodiments, dimensions can vary from
one sample time to the next and/or at any moment at which an
event occurs (e.g., when a continuous-time signal exceeds a
threshold value).

Exemplary Processing

FIG. 4 is a flow chart illustrating exemplary processing acts
that can be used in an embodiment. An input file may be
received at computer 102 (act 410). For example, an input file
that includes model 110 may be received at a workstation.
The input file may be loaded and parsed in computer 102 (act
420). The parsed input file may be searched to identify syntax
elements in the model (act 430).

The parsed input file may be compiled for an identified
target environment, e.g., a particular execution environment
(act 440). Execution environments can include, but are not
limited to, computer 102, model 110, target environments
(e.g., a target device), etc. Examples of target devices can
include, but are not limited to, central processing units
(CPUs), graphics programming units (GPU), digital signal
processors (DSP), application specific integrated circuits
(ASICs), field programmable gate arrays (FPGAs), multi-
processor systems on chip (MPSoCs), application specific
instruction-set processors (ASIPs), programmable logic
devices (PLDs), microelectrical mechanical systems
(MEMs), etc.

The compiler of act 440 may produce executable code
configured to run on an identified target platform, e.g., a target
device (act 450). The executable code may be sent to the
target environment and may be executed therein (act 460). For
example, the executable code may be copied to a compact
disc and loaded from the compact disc into the target envi-
ronment. Alternatively, the executable code may be down-
loaded to the target environment over a connection, e.g., a
network connection. Target environments can include and/or
can operate with other types of environments, such as inter-
pretive simulation environments. An interpretive simulation
environment, may be a simulation environment in which
instructions for an executable form of a simulation require
interpretation through another program. An example of an
interpreted simulation environment may be the Simulink®
environment from The MathWorks Inc., of Natick Mass.

The executable code may be executed to produce results
(act 470). For example, the executable code can be executed
on the target device to produce execution results. The execu-
tion results can be displayed to a user, used to perform an
operation on the target device (e.g., to control a system),
stored in a storage media, or transmitted to a destination (e.g.,
another device).

FIG. 5 illustrates processing acts that can be executed to
perform coverage analysis. FIG. 5 includes acts 410-450 of
FIG. 4, and these acts may be performed as described in
connection with FIG. 4 according to an exemplary embodi-
ment. At act 440, coverage analysis logic may be identified.
For example, the coverage analysis logic may include mecha-
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nisms for performing code coverage measurements or model
coverage. Computer 102 may compile the input file for the
target environment (act 440).

In an embodiment, coverage analysis logic may include
coverage instrumentation that instruments executable code
adapted to implement a block in a model and/or that instru-
ments a block in a model at the model level. Embodiments can
identify and address discrepancies between code coverage
results at the model level and at the code level because cov-
erage instrumentation logic operates at the code and/or the
model level. The logic can be configured to perform substan-
tially any type of coverage analysis, including, but not limited
to, diagonal, block lower triangular, upper triangular, sym-
metric, emptiness, etc., analyses. Information from act 440
may be provided to act 520 and executable code may be
communicated from act 450 to act 520.

The code coverage instrumentation may be associated with
executable code produced at act 450 (act 520). In an embodi-
ment, the output of act 450 may be instrumented code 140 that
is configured to execute in the target execution environment.
The instrumented code may be executed in the target execu-
tion environment (act 530). For example, executing instru-
mented code 140 in the target environment may include
executing application code that performs an operation in the
target environment. Executing the instrumented code may
produce one or more execution results in the target environ-
ment (act 550).

In an embodiment, when instrumented code is executed in
act 530, a coverage output 145 (e.g., coverage data) may be
generated when instrumented code 140 is executed (act 540).
The coverage data may indicate how many coverage points
were tested and for what input sizes, dimensions, and/or
conditions the coverage points were evaluated. Embodiments
may provide coverage data in many ways and/or forms. For
example, coverage data can be provided in displayed forms
(e.g., on paper, on a display device, etc.), or in machine
readable forms (e.g., stored as a file on a computer readable
storage medium, transmitted over a wired or wireless link to
a destination device, etc.).

In an embodiment, coverage data can be provided to a user
in areport. The report may be interactive and may include, for
example, links that can be selected using a pointing device.
The links may couple the report to a model from which code
was generated. For example, a link (e.g., a hyperlink) may be
associated with a coverage result for saturation block 120. A
user may select the link and saturation block 120 may be
displayed to the user within model 110. The user may be able
to interact with saturation block 120, input data for saturation
block 120, output data for saturation block 120, etc., to allow
the user to investigate the operation of model 110. As another
example, a link (e.g., a hyperlink) may be associated with the
saturation block 120. A user may select the link and the
coverage result for the saturation block 120 may be displayed.

Coverage data may be arranged to provide results for an
individual model element, e.g., a block, or may be amalgam-
ated into a single result that represents a number of individual
coverage results. Coverage data may provide information
identifying a portion of a model that was exercised during
execution of the model, overheads for the model, heap sizes
used by the model, simultaneous occurrences of values,
operations, conditions, etc. Coverage data may also be scaled
or weighted by, for example, data size, when desired.

The instrumented code may produce an execution result at
act 550 that may match an execution result produced at act
470 of FIG. 4. Matching execution results between act 470
and act 550 may indicate that the coverage instrumentation
did not adversely impact a deterministic behavior of the appli-
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cation code. In an embodiment, the coverage data may be
produced along with the execution result via act 550.

Coverage data and/or execution results can be displayed,
stored, processed, or transmitted using computer 102.

Exemplary embodiments may include types of logic that
perform additional functions. For example, an embodiment
can include initialization logic that is used to setup and/or
initialize a model, certain signal sizes/dimensions, etc. The
initialization logic may create a data structure, such as afile or
a structure in memory (e.g., an array, a list, a struct, a record,
avector, etc.), to store setup/initialization information. When
amodel is executed with a signal having a first size/dimension
a first initialization file, method, or function, etc., may be
created. If the signal with the first size/dimension is reused
with the model at a later time, the first initialization file,
method, or function, etc., may be retrieved from storage and
used to configure the model for processing the signal.

Exemplary User Interfaces

FIG. 6 illustrates an exemplary user interface that can be
used to display coverage data. For example, user interface 600
may be displayed on a display device associated with com-
puter 102. Interface 600 may include a block name field 605
that identifies a graphical modeling block for which coverage
data is provided. Interface 600 may further include informa-
tion about a parent model, parent subsystem, parent block,
etc., that may be associated with a block identified in field
605. For example an Abs block may be identified, where the
Abs block produces an absolute value of an input signal.
Interface 600 may further include metric field 610 and cov-
erage field 615 as illustrated in FIG. 6. Metric field 610 may
indicate metrics for which evaluations were performed. Cov-
erage field 615 may include information indicating a degree
of coverage for a respective metric in metric field 610.

In an embodiment, interface 600 may include decisions
field 620 that can include information about decisions that
were evaluated during coverage analysis. For example, a table
may be provided in interface 600 that identifies input indices
tested (e.g., an index of 1 or 2 for FIG. 6). Embodiments may
allow full decision coverage for indices 1 and 2 of FIG. 6. In
this implementation, full decision coverage for indices 1 and
2 may mean that a signal size of 2 has been covered but that a
size of 1 has not necessarily been covered or that a signal size
of 2 has been covered and that a size of 1 has also been
covered. The table may further include information about a
coverage percentage for a respective input value and/or infor-
mation that identifies how many times a particular condition
was evaluated, or hit, during coverage analysis.

For example (referring to table cell 630 of FIG. 6) for
input(1), a condition of input(1)<0 may have been evaluated
to determine whether the input(1) was evaluated as false (i.e.,
input(1) was not less than zero) or as true (i.e., input(1) was
less than zero). Since input (1) was evaluated to be both true
and false its coverage analysis percentage may be 100%.
Table cell 630 may further include information that identifies
how many times the test for an input value evaluated as false
or true.

Referring now to table cell 640 of FIG. 6, coverage analysis
may be performed for input(2), i.e., an index of 2 for the input
signal. Since input(2) was evaluated to be both true and false,
its coverage analysis percentage may be 100%. In the
example of FIG. 6, the input indices could have been 3, 4, and
5 in addition to those tested, namely 1 and 2 (as noted in cell
650 of FIG. 6). However, in the testing performed for FIG. 6,
input indices of 3, 4, and 5 were not tested. If the untested
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indices of 3, 4 and 5 were factored into the coverage analysis
as 0%, respectively, coverage analysis results for the Abs
block would change.

For example, factoring coverage analysis results in for
indices of 3, 4, and 5 would have produced the following
coverage results: 100% for input(1), 100% for input(2), 0%
for input(3), 0% for input(4) and 0% for input(5). Adding
these percentages together would have lowered the overall
coverage analysis percentage from 100% to 40%. A coverage
0t'40% may indicate that coverage analysis for Abs block was
unacceptably low (e.g., a coverage of 40%), when in fact the
coverage analysis was 100% for the input sizes that were
actually tested (namely input indices of 1 and 2).

Exemplary embodiments can prevent distorted coverage
analysis results by ignoring, or not factoring in, untested input
indices with respect to coverage analysis results. Exemplary
embodiments may further hide or obscure information related
to untested input indices/sizes. For example, information
about untested input indices/sizes may be hidden from a user
so that the user is not distracted by coverage results for the
untested input indices/sizes and/or conditions.

Referring to FIG. 6, input indices 3, 4 and 5 can be col-
lapsed together and identified as not having been tested. The
untested input indices can further be identified using shading,
coloring, fonts that differ from other fonts used in interface
600, etc. In FIG. 6, table cell 650 identifies a portion of the
table that includes collapsed information related to untested
input indices.

Embodiments, such as the one illustrated in FIG. 6, can be
used to support other types of analyses and/or operations. For
example, interface 600 can maintain and/or display occur-
rence counts for tested conditions of a variable size signal. For
example, cell 630 indicates that the false condition occurred
49 times while the true condition occurred 52 times. Interface
600 may also keep track of the coverage per size of the
dimension when desired. Information displayed in interface
600 can be used to support operations, such as coverage
guided optimization.

By way of example, referring to FIG. 6, a user may deter-
mine that input indices of 1 and 2 are used with the Abs block,
while indices of 3, 4 and 5 are not used. Code for a model that
includes the Abs block may be configured to handle input
indices up to 5 so the model may allocate memory for aninput
signal of 5 when, in fact, only a signal index up to 2 is used.
The user may be able to regenerate code for the model based
on the coverage data displayed in interface 600. Embodi-
ments may further allow optimized code to be automatically
generated in response to the coverage report. The regenerated
code may be optimized to allow the model to handle input
signal indices of 1 and 2. As a result of regenerating code for
the model, less memory may be required as compared to what
was needed for the model before regenerating the code. Other
embodiments may allow other techniques to be used for
reconfiguring a model or source code based on coverage
results.

Exemplary embodiments, such as the one illustrated in
FIG. 6, can be used to superimpose coverage results onto a
model or source code for which the coverage results were
generated. Superimposing coverage results onto a model may
allow a user to quickly identify a portion of the model or
source code that produced a certain coverage result. Embodi-
ments may further allow models and/or source code to be
annotated based on coverage results.

Embodiments can further record minimum and maximum
signals sizes and/or dimensions that were tested and may list
a maximum allocated size/dimension proximate to the mini-
mum/maximum sizes/dimensions to allow a user to deter-

5

10

15

20

25

30

35

40

45

55

60

65

12

mine an amount of excess capacity in a model or source code.
Embodiments may still further keep track of a number of
elements in a signal having a varying size/dimension and on
operations performed on the elements. For example, a cover-
age result may indicate that certain elements in a signal had
certain mathematical or logical operations performed on
them when a model was executed. Still other embodiments
may perform operations across stored instances of coverage
data. For example, an embodiment can determine operating
trends for a model based on comparing archived instances of
coverage data that represent different configurations of the
model.

FIG. 7 illustrates an alternative implementation of a user
interface that can be used to display coverage analysis infor-
mation. Interface 700 may include a block field 710 that
identifies a block for which coverage analysis information is
provided. Interface 700 may include table 720 that can iden-
tify tested input signals and/or conditions and untested input
signals and/or conditions. Table 720 can further include infor-
mation about a number of times that a particular condition
occurred for a given input signal. For example, input port 1(1)
may have evaluated as true 51 times and may have evaluated
as false 50 times.

Interface 700 may also include table 730 that can include
information associated with, for example, modified condition
decision coverage (MC/DC). MC/DC can refer to a coverage
measurement that indicates whether a condition indepen-
dently changes decision outcome. Branch coverage and
predicate coverage are other types of decision coverage that
can be used along with MC/DC coverage. In an embodiment,
an MC/DC report may be generated and may identify cover-
age for a test in which occurrences that include changing an
individual subcondition within a transition result in a change
from true to false of an entire transition trigger expression. By
way of example, if a transition executes on the condition
[C1 & C2 & C31C4 & C5], the MC/DC report for that tran-
sition shows actual occurrences for each of the five subcon-
ditions (C1, C2, C3, C4, CS5) in which changing its result from
true to false is able to change the result of the entire condition
from true to false. In an embodiment, coverage analysis
results can be test vectors that may result in MC/DC coverage.
Embodiments can perform other types of coverage, such as
condition coverage, statement coverage, and cyclomatic
complexity.

FIG. 8 illustrates an embodiment of a user interface that
can be used to display information related to coverage analy-
sis. Interface 800 may include a name field 810 that identifies
types of information displayed in the interface. For example,
interface 800 may display information about signal ranges
and may include coverage analysis for output sizes or dimen-
sions that are produced for a given input signal. For example,
interface 800 may include information about minimum sizes/
values, maximum sizes/values, and/or a number of hits for
respective output sizes/values that are tested. Interface 800
may further collapse information for input sizes/values that
were not tested, such as input sizes of 3, 4 and 5 for Abs as
indicated by reference number 820, input size of 5 for Abs1 as
indicated by reference number 821, input sizes 3-5 for Min-
Max]1 as indicated by reference number 822 and input sizes of
3-5 for Switch as indicated by reference number 823.

FIG. 9A illustrates an embodiment of a user interface that
can be used to display information related to coverage analy-
ses. Interface 900 may include a name field 910 that identifies
information that can be displayed elsewhere in interface 900.
For example, interface 900 may display information about
signal ranges according to size.
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In FIG. 9A, a legend 920 may be provided that indicates a
number of hits for a particular size of a signal range. Interface
900 may further include a display feature that can identify a
cumulative size distribution for respective signal range sizes.
Cumulative size distribution may refer to a histogram type of
plotthat shows a frequency of occurrence of certain total sizes
for a total number of signal elements. The cumulative size
distribution may be represented as a product of all dimension
sizes in an embodiment. Referring to FIG. 9A, information
for entries may be aggregated and may appear in the upper left
cell of display feature 930. Aggregated information for
entries may also be displayed using other techniques, such as
by displaying the information in a field, an entry, a pane, a
window, etc., of display feature 930. Displayed information
may further vary in color, size, font, effect etc. Display feature
930 can provide information to a user in a manner that makes
it easy for the user to dynamically display and/or identify
results, trends, etc., as testing is performed on a model.

Display feature 940 may include information representing
a number of hits for a given dimension of a variable size
signal. For example, a signal having a dimension of 5x5 might
appear in the lower right corner of display feature 940, while
a signal having a dimension of 1x1 might appear in the upper
left corner of display feature 940. Display feature 940 may
allow a user to quickly determine whether a particular signal
dimension has been tested.

As previously discussed, embodiments can be used to test
signals having varying dimensions. Embodiments may also
be used to test signals that vary in size even when a signal may
not vary in dimensions. For example, a signal U may have a
size =5. For example, for U(i), i may vary between an empty
value, e.g., [ |, and 5. In an embodiment, the possible sizes for
U(i) may be [ ], 1, 2, 3, 4, 5. FIG. 9B illustrates a possible
representation for U when Us<5.

In FIG. 9B, U can take on sizes of empty ([ ]) 950, one (1)
955, two (2) 960, three (3) 965, four (4) 970 and five (5) 975.
In some implementation, certain signal sizes may be of par-
ticular interest since they may be prone to causing a system to
respond in an unexpected manner. For example, a system may
not expect input sizes of [ ] 950 or a scalar (e.g., (1) 955).
Therefore, when [ ] 950 or (1) 955 are received as input
signals, an unexpected processing result may be produced.
Embodiments can allow all sizes and/or dimensions of inputs
signals to be tested; and, therefore can be used to test uncom-
mon input signal sizes, such as [ ] 950 and (1) 955.

Embodiments of interfaces 600, 700, 800, and 900 can use
substantially any technique to display information related to
coverage analyses performed on input and/or output data used
with executable code and/or models. Embodiments can be
configured to separately monitor coverage results for execut-
able code and for a model implemented via the executable
code so that differences between the code coverage and
model coverage can be detected.

Exemplary Distributed Implementation

Distributed implementations may distribute processing
across two or more cores in a single processing device, dis-
tribute processing across multiple processing devices
installed within a single enclosure, and/or distribute process-
ing across multiple types of processing logic connected by a
network.

FIG. 10 illustrates an exemplary system that can perform
simulations and/or coverage analyses on behalf of a client
using a distributed computing environment. System 1000
may include computer 102, network 1030, service provider
1040, remote database 1050 and cluster 1060. The implemen-
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tation of FIG. 10 is exemplary and other distributed imple-
mentations of the invention may include more devices and/or
components, fewer devices and/or components, and/or
devices/components in configurations that differ from the
exemplary configuration of FIG. 10.

Computer 102 may include graphical user interface (GUI)
1010 and computing environment 1020. GUI 1010 may
include an interface that allows a user to interact with com-
puter 102 and/or remote devices (e.g., service provider 1040).
In an exemplary embodiment, GUI 1010 may be similar to the
interfaces of FIG. 6, 7, 8 or 9A.

Computing environment 1020 may include hardware and/
or software based logic that provides a computing environ-
ment that allows users to perform tasks related to disciplines,
such as, but not limited to, mathematics, science, engineering,
medicine, business, etc., more efficiently than if the tasks
were performed in another type of computing environment,
such as an environment that required the user to work exclu-
sively with text-based code in a conventional programming
language, such as C++, C, Fortran, Pascal, etc.

Network 1030 may include any network capable of trans-
ferring data (e.g., packet data or non-packet data). Implemen-
tations of network 1030 may include local area networks
(LANs), metropolitan area networks (MANs) and/or wide
area networks (WANSs), such as the Internet, that may operate
using substantially any network protocol, such as Internet
protocol (IP), asynchronous transfer mode (ATM), synchro-
nous optical network (SONET), user datagram protocol
(UDP), IEEE 802.10, etc.

Network 1030 may include network devices, such as rout-
ers, switches, firewalls, and/or servers (not shown). Network
1030 may be a hardwired network using wired conductors
and/or optical fibers and/or may be a wireless network using
free-space optical, radio frequency (RF), and/or acoustic
transmission paths. In one implementation, network 1030
may be a substantially open public network, such as the
Internet. In another implementation, network 1030 may be a
more restricted network, such as a corporate virtual network.
Implementations of networks and/or devices operating on
networks described herein are not limited to any particular
data type, protocol, architecture/configuration, etc. For
example, in one embodiment, network 1030 may be a quan-
tum network that uses quantum-compatible networking pro-
tocols.

Service provider 1040 may include a device that makes a
service available to another device. For example, service pro-
vider 1040 may include an entity that provides one or more
services to a destination using a server and/or other devices.
Services may include instructions that are executed by a
destination to perform an operation. Alternatively, a service
may include instructions that are executed on behalf of a
destination to perform an operation on the destination’s
behalf

Assume, for sake of example, that a service provider oper-
ates a web server that provides one or more web-based ser-
vices to a destination, such as computer 102. The web-based
services may allow computer 102 to perform distributed
simulations of electrical and/or mechanical systems using
hardware that is operated by the service provider. For
example, a user of computer 102 may be allowed to process
signals having varying sizes and/or dimensions using the
service provider’s hardware. In one implementation, a cus-
tomer (user) may receive services on a subscription basis. A
subscription may include substantially any type of arrange-
ment, such as monthly subscription, a per-use fee, a fee based
on an amount of information exchanged between service
provider 1040 and the customer, a fee based on a number of
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processor cycles used by the customer, a fee based on a
number of processors used by the customer, etc.

Remote database 1050 may include a device that stores
machine-readable information for use by other devices, such
as computer 102. In one embodiment, remote database 1050
may include an array or grid of storage devices (e.g., hard
disks, optical disks, solid-state storage devices, etc.) that store
information about variable size/dimension signals, models
used to process variable size/dimension signals, data pro-
duced by models, etc.

Cluster 1060 may include a group of processing devices,
such as units of execution 1070A, B, and C, that can be used
to perform remote processing (e.g., distributed processing,
parallel processing, etc.). Units of execution 1070 may
include hardware and/or hardware/software based devices
that perform processing operations on behalf of a requesting
device, such as computer 102. In an embodiment, units of
execution 1070A, B, and C may each compute a partial cov-
erage result for a variable size/dimension signal and these
partial coverage results can be combined into an overall cov-
erage result for a model.

Embodiments operating in a standalone or in a distributed
implementation can perform coverage analyses on code asso-
ciated with text-based computing and/or modeling applica-
tions, such as, but not limited to, MATLAB® by The Math-
Works, Inc.; Octave; Python; Comsol Script; MATRIXx from
National Instruments; Mathematica from Wolfram Research,
Inc.; Mathcad from Mathsoft Engineering & Education Inc.;
Maple from Maplesoft; Extend from Imagine That Inc.;
Scilab from The French Institution for Research in Computer
Science and Control (INRIA); Virtuoso from Cadence; or
Modelica or Dymola from Dynasim.

Embodiments can further perform coverage analyses on
code associated with graphical modeling environments, such
as, but not limited to, Simulink®, Stateflow®, SimEvents™,
etc., by The MathWorks, Inc.; VisSim by Visual Solutions;
LabView® by National Instruments; Dymola by Dynasim;
SoftWIRE by Measurement Computing; WiT by DALSA
Coreco; VEE Pro or SystemVue by Agilent; Vision Program
Manager from PPT Vision; Khoros from Khoral Research;
Gedae by Gedae, Inc.; Scicos from (INRIA); Virtuoso from
Cadence; Rational Rose from IBM; Rhopsody or Tau from
Telelogic; Ptolemy from the University of California at Ber-
keley; ASCET, CoWare, or aspects of a Unified Modeling
Language (UML) or SysML environment.

Examples of Illustrative Embodiments

An embodiment can be implemented using a computer-
readable medium storing executable instructions that can be
executed on processing logic. When the instructions are
executed, variable signals may be processed. For example,
variable size or dimension signals can be processed. The
instructions can be configured to receive executable code that
includes constructs with variable signals where the constructs
can be used to process the variable signals. The instructions
can also be configured to perform a coverage measurement on
the received executable code based on information about at
least one of the variable signals. A coverage result can be
produced based on the performed coverage measurement,
and the coverage result can identify a degree of coverage for
the executable code when the executable code processes the
variable signals. The embodiment can use executable code
that is a graphical or text-based model. Variable signals used
with the embodiment may include elements and the coverage
results may account for the elements and/or operations per-
formed on the elements. For example, a coverage measure-
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ment can iterate over elements of the variable signal before
producing a coverage result. Coverage results produced using
the embodiment, can reflect one or more changes in size
and/or dimension of the variable signal, constructs having a
maximum size/dimension, a largest size/dimension of the
variable signal that was processed, occurrence counts of
dimensionalities of the variable signal, outputs of an interpre-
tive simulation, etc. The embodiment can produce coverage
results using instrumentation code that may be separate or
intermixed with the executable code.

An embodiment can be implemented using a computer-
readable medium that stores executable instructions that can
be executed on processing logic. The instructions, when
executed, can evaluate coverage for executable generated
code. For example, source code may be generated from a
model, such as a graphical or textual model. The generated
code may include signals having varying sizes and/or dimen-
sions. The generated code may further include instrumenta-
tion for performing coverage measurements on the signals. In
the embodiment, the generated code may be executed and
coverage may be evaluated for the generated code while the
code executes. For example, the generated code may be
executed on a target device. The evaluating may be performed
across a portion of the varying sizes/dimensions of the sig-
nals, or the evaluating may be performed across all of the
varying sizes/dimensions. The embodiment may produce a
coverage result based on the evaluating and/or the executing.
The coverage result may indicate whether a particular size/
dimension of a signal was executed, how many times the
particular size/dimension of the signal was executed, whether
a condition associated with the signal was encountered, etc.
The coverage result may be used to reconfigure the model
from which the code was generated or to reconfigure the
generated code itself. For example, an embodiment can
reconfigure a model or generated code that was not designed
to run in parallel to run in parallel once the model or code is
reconfigured. In the embodiment, the varying of the signal
may include varying a dimension of the signal, where the
signal can include zero or more dimensions. The coverage
result may pertain to zero or more of the dimensions of the
signal or to information related to the signal, such as an
occurrence count of dimensionalities of the signal.

An embodiment can be implemented using a computer-
readable medium storing executable instructions that are
executed on processing logic. The instructions, when
executed, may output coverage information, such as a cover-
ageresult, a coverage measurement, etc. The instructions may
be configured to receive a coverage result for executable code
that includes one or more variable signals. The coverage
result may identify elements of the one or more variable
signals that were processed using the executable code. Cov-
erage results may ignore coverage measurements associated
with signal elements that were not processed by the execut-
able code. Coverage results may be received using the
instructions and may be displayed on a graphical user inter-
face. Coverage results may also be outputted using reports,
files, or data structures that can be sent to destinations, such as
a receiving device or application. Coverage results may be
used to reconfigure the executable code, where the reconfig-
uring may allow, for example, the executable code to interact
with a memory more efficiently, or may allow the reconfig-
ured code to execute in a distributed processing environment.

An embodiment can be implemented using a computer-
readable medium that stores executable instructions that are
executed using processing logic. The instructions, when
executed, may use coverage results for a number of execu-
tions, such as two or more executions of code. The instruc-
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tions may be configured to process a first portion of a variable
signal, having a first size and/or dimension, using a first
execution and to process a second portion of the variable
signal, having a second size and/or dimension, using a second
execution. The instructions may be configured to determine a
first coverage result for the first execution when the first
portion is processed and to determine a second coverage
result for the second execution when the second portion is
processed. In the embodiment, the first execution may occur
on a first processing logic or a first thread, and the second
execution may occur on a second processing logic or asecond
thread. The embodiment may have the first execution be a first
instance of an execution and the second execution be asecond
instance of the execution. The embodiment can be configured
to merge or combine the first and second coverage results. For
example, the first and second coverage results can be aggre-
gated into an overall coverage result, where the overall cov-
erage result indicates a number of times that an element of the
variable signals was processed. In the embodiment, execut-
able code operated on by the first and second executions may
support a range of sizes and/or dimensions that can determine
a minimum or a maximum value for the variable signal. An
overall coverage result for the code may indicate an allocated
size/dimension used by the variable signal. The overall cov-
erage result can be used to redefine the allocated size/dimen-
sion prior to reprocessing the first or second portions. Cover-
age results for the embodiment can be used to reconfigure
executable code prior to generating an updated coverage
result. Coverage results can also be test vectors without
departing from the spirit of the invention. The test vectors can
be aggregated to produce an overall test vector. In an embodi-
ment, aggregating coverage results can include taking the
union of everything that was covered during coverage analy-
sis. In other embodiments, other set operations can be per-
formed on coverage results, such as intersection, set differ-
ences, etc. Aggregating coverage results can also include
processing data in a manner by which a result is representa-
tive of the cumulative execution of performed tests. By way of
example, two pieces of data may be present that were pro-
duced by two tests. The two tests may be combined and
coverage results may be produced for the combined tests.

An embodiment can be implemented using a computer-
readable media that stores executable instructions. The
instructions, when executed, may evaluate coverage for
executable code. The medium may store instructions for gen-
erating first coverage information for a first execution that is
performed using the executable code and a first size of a
variable signal. The medium may store instructions for gen-
erating second coverage information for a second execution
that is performed using the executable code and a second size
of'the variable signal. The medium may store instructions for
identifying a difference between the first and second coverage
information, where the difference indicates how the first
execution differs from the second execution. The medium can
store instructions for reconfiguring the executable code based
on the first or second coverage information or based on a
difference of the first and second coverage information. The
reconfiguring can include modifying a limit for the variable
signal in the embodiment. In the embodiment, the first cov-
erage information can be related to an executable element in
a model, such as a graphical or textual model, where the
element is executed during the first execution.

An embodiment can be implemented using a computer-
readable medium storing executable instructions. The
instructions, when executed, may reconfigure code. The
instructions may be configured to collect signal size informa-
tion for variable input signals processed by executable code,
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such as executable code for a model. The instructions may be
configured to perform coverage analysis on the executable
code for the variable input signals and the coverage analysis
may produce a coverage report. The instructions can be con-
figured to reconfigure the executable code based on the cov-
erage results and to re-process one or more of the variable
input signals using the reconfigured executable code. The
reprocessing can produce an updated coverage result, if
desired. The reconfiguring can cause the executable code to
use memory more efficiently than the executable code did.
The reconfiguring may allow the reconfigured code to
execute in a parallel implementation even though the execut-
able code may have been configured to execute in a standal-
one, non-distributed, manner.

An embodiment can be implemented using a computer-
readable medium storing executable instructions. The
instructions, when executed, can output coverage information
for executable code. The instructions can be configured to
identify a portion of a display, such as a pane, window, region,
tile, etc., where the pane determines a layout region for out-
putting coverage information for the executable code. The
instructions can be configured to receive coverage informa-
tion for a variable signal. For example, the signal may have
dimensions that vary. In an embodiment, the dimensions can
include elements, e.g., entities in an array, a matrix, a vector,
etc. The coverage information may indicate whether the vari-
able signal includes a value for one or more of the elements
when the executable code operates on the variable signal. The
instructions may be configured to format the coverage infor-
mation within the pane, where the formatting arranges the
coverage information in a determined manner, and to output
the coverage information within the pane. The coverage
information can be outputted in a pattern that is related to the
dimensionality of a signal, such as a 2x2 array, or matrix, that
includes four elements when a signal has dimensions of 2x2.
The pattern can be outputted in the pane and the pane can be
displayed to a user via a graphical user interface or via a
hardcopy (e.g., paper) output. In the embodiment, the execut-
able code can include a limit that identifies a maximum allow-
able size and the signal may have dimensions that do not
exceed the maximum allowable size. Elements having values
of the variable signal may be provided along with elements
that do not have values of the variable signal. The outputting
may include displaying the elements having values of the
variable signal and collapsing elements that do not have val-
ues of the variable signal. The embodiment can determine
coverage values for elements of the variable signal that
include values. The coverage values can be superimposed
onto a model when desired. Coverage information, e.g., a
coverage result, may include a link, such as a hyperlink, that
can allow a user to associate the coverage information with,
for example, a model, when the link is selected. The coverage
information can include occurrence counts for dimensionali-
ties, and other aspects of the variable signal, that were pro-
cessed by the executable code. Coverage information may
identify a minimum size of the variable signal operated on by
the executable code and/or a maximum size of the variable
signal. Signals may support different data types such as float-
ing point (e.g., single and double), fixed-point, string, Bool-
ean, integer, enumeration, etc. A model or part of a model may
change the data type of a signal depending on information
such as what the data type of the input is that it is given. For
models, or parts of a model, that support variable data types,
coverage of the possible set of data types indicates whether
the model, or part of the model, has been executed for which
elements in this set. Full coverage may be obtained when the
model, or a part of the model, has been executed for each of
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the elements in the set. The data type of a signal may be fixed
during an execution or the data type may be dynamic and
change during an execution.

Signals may correspond to a set of function calls from one
model part to another. Coverage of the set of function calls
may show which function calls in this set have been executed.
Full coverage may be obtained if all function calls in the set
have been executed.

An embodiment can be configured to allocate an amount of
memory for variable signals used by a model based on an
expected maximum size of an input signal. This expected
maximum size may be automatically derived from analysis of
the model or indicated by the user. This allocation may occur
in executable code generated from the model. Alternatively,
the expected maximum size may be automatically derived
from analysis of the code or indicated by the user at the code
or model level. In some instances, the actual amount of
memory required may exceed the allocated size because of an
unanticipated occurrence, such as an input signal exceeding
the expected maximum size, etc. When it is determined that
allocated memory is inadequate, the embodiment may allo-
cate additional memory, either locally or remotely, to accom-
modate the larger signal. This allocation may occur in the
generated code by a dynamic memory allocation. The user
may indicate whether this dynamic memory allocation is
undesirable and the code should result in an error or excep-
tion. The embodiment, can adapt code and/or model coverage
analyses based on the larger signal to provide meaningful
code and/or model coverage results. The embodiment may
also perform code profiling and may inform a user that an
unexpected signal size has been encountered. The embodi-
ment may inform the user regarding changes that need to be
made to the model and/or underlying code for the model to
allow the model to handle the larger signal size. The embodi-
ment may further identify portions of code and/or the model
that may be modified to avoid requiring the larger size signal,
e.g., to allow the user to fix erroneous code for the model to
avoid the unexpected signal size.

CONCLUSION

Implementations may allow coverage analyses to be per-
formed on signals that vary, e.g., vary in size and/or dimen-
sion.

The foregoing description of exemplary embodiments of
the invention provides illustration and description, but is not
intended to be exhaustive or to limit the invention to the
precise form disclosed. Modifications and variations are pos-
sible in light of the above teachings or may be acquired from
practice of the invention. For example, while a series of acts
has been described with regard to FIGS. 4 and 5, the order of
the acts may be modified in other implementations consistent
with the principles of the invention. Further, non-dependent
acts may be performed in parallel.

In addition, implementations consistent with principles of
the invention can be implemented using devices and configu-
rations other than those illustrated in the figures and described
in the specification without departing from the spirit of the
invention. Devices and/or components may be added and/or
removed from the implementations of FIG. 1 or 10 depending
on specific deployments and/or applications. Further, dis-
closed implementations may not be limited to any specific
combination of hardware.

Further, certain portions of the invention may be imple-
mented as “logic” that performs one or more functions. This
logic may include hardware, such as hardwired logic, an
application-specific integrated circuit, a field programmable
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gate array, a microprocessor, or a combination of hardware
and software. The logic may further include software-based
instructions that may be stored in one or more computer-
readable storage media and may include computer-execut-
able instructions for execution by processing logic, such as a
piece of processing logic operating in a workstation.

No element, act, or instruction used in the description of the
invention should be construed as critical or essential to the
invention unless explicitly described as such. Also, as used
herein, the article “a” is intended to include one or more
items. Where only one item is intended, the term “one” or
similar language is used. Further, the phrase “based on,” as
used herein is intended to mean “based, at least in part, on”
unless explicitly stated otherwise.

Headings and sub-headings used herein are to aid the
reader by dividing the specification into subsections. These
headings and sub-headings are not to be construed as limiting
the scope of the invention or as defining features of the inven-
tion.

The scope of the invention is defined by the claims and their
equivalents.

What is claimed is:
1. One or more non-transitory computer-readable media
storing instructions, the instructions comprising:
one or more instructions that, when executed by one or
more processors, cause the one or more processors to:
obtain a coverage result for executable code that con-
tains variable signals,
the coverage result identitying elements of the vari-
able signals that were processed during an execu-
tion of the executable code;
determine, based on the coverage result, information
regarding a size of the variable signals processed dur-
ing the execution of the executable code;
modify the executable code based on the information
regarding the size of the variable signals processed
during the execution of the executable code; and
process the variable signals during an execution of the
modified executable code.
2. The one or more non-transitory computer-readable
media of claim 1, where the instructions further comprise:
one or more instructions that, when executed by the one or
more processors cause the one or more processors to
output the coverage result via a graphical user interface.
3. The one or more non-transitory computer-readable
media of claim 1, where the instructions further comprise:
one or more instructions that, when executed by the one or
more processors cause the one or more processors to:
generate a report that includes the coverage result; and
at least one of:
store the report including the coverage result in a file;
or
store the report including the coverage result in a data
structure available to a receiving application,
where the receiving application operates on the
data structure to determine a performance of the
executable code related to processing the vari-
able signals.
4. The one or more non-transitory computer-readable
media of claim 1, where the instructions further comprise:
one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:
allocate the modified executable code to execute in a
distributed processing environment.
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5. The one or more non-transitory computer-readable
media of claim 1, where the instructions further comprise:
one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:
determine, based on the coverage result, coverage mea-
surements for the elements of the variable signals that
were processed during the execution of the executable
code; and
determine, based on accounting for the elements of the
variable signals, coverage measurements for the ele-
ments of the variable signals that were not processed
during the execution of the executable code; and
where the one or more instructions to modify the execut-
able code include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
modify the executable code based on the coverage
measurements of the elements of the variable sig-
nals that were processed during the execution of the
executable code and based on the information
regarding the size of the variable signals processed
during the execution of the executable code.
6. The one or more non-transitory computer-readable
media of claim 1,
where the instructions further comprise:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
output information that indicates occurrence counts
for dimensionalities, of the variable signals, that
were processed during the execution of the execut-
able code,
the coverage result including the information about
the occurrence counts; and
where the one or more instructions to modify the execut-
able code include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
modify the executable code based on the information
that indicates the occurrence counts and based on
the information regarding the size of the variable
signals processed during the execution of the
executable code.
7. The one or more non-transitory computer-readable
media of claim 1,
where the variable signals vary in dimension,
where the instructions further comprise:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
determine variances in the dimension of the variable
signals processed during the execution of the
executable code, and
where the one or more instructions to modify the execut-
able code include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
modify the executable code based on the variances in
the dimension of the variable signals processed
during the execution of the executable code and
based on the information regarding the size of the
variable signals processed during the execution of
the executable code.
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8. One or more non-transitory computer-readable media
storing instructions, the instructions comprising:

one or more instructions that, when executed by one or
more processors, cause the one or more processors to:

obtain coverage information for a variable signal pro-
cessed during an execution of executable code,

the executable code being associated with informa-
tion identifying a maximum allowable size for the
variable signal, and

the variable signal having dimensions that include
elements;

provide one or more values that do not exceed the maxi-
mum allowable size for a first set of the elements;

provide one or more values that exceed the maximum
allowable size for a second set of the elements;

modify the executable code based on one or more of the
first set of the elements or the second set of the ele-
ments;

format, after modifying the executable code, the cover-
age information within a layout region to arrange the
coverage information in a determined manner; and

output the formatted coverage information within the
layout region,
the formatted coverage information being arranged in
the determined manner, and

the one or more instructions to output the formatted
coverage information including:

one or more instructions that, when executed by the
one or more processors, cause the one or more
processors to:

provide, for display, the first set of the elements,
and

collapse the second set of the elements.

9. The one or more non-transitory computer-readable
media of claim 8, where the one or more instructions to output
the formatted coverage information include:

one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:

output the formatted coverage information in a pattern
that is related to a dimensionality of the variable sig-
nal.

10. The one or more non-transitory computer-readable
media of claim 9, where the one or more instructions to output
the formatted coverage information include:

one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:

output the formatted coverage information in a matrix
that is related to the dimensionality of the variable
signal.

11. The one or more non-transitory computer-readable
media of claim 8, where the one or more instructions to
modify the executable code include:

one or more instructions that, when executed by the one or
more processors, cause the one or more processors to:

determine coverage values for one or more elements, of
the elements included in the variable signal, that
include a value, and

modify the executable code based on the coverage val-
ues and one or more of the first set of elements or the
second set of elements.
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12. The one or more non-transitory computer-readable
media of claim 8,
where the executable code is generated based on a graphi-
cal model, and
where the one or more instructions to output the formatted
coverage information include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
superimpose the formatted coverage information on
the graphical model.
13. The one or more non-transitory computer-readable
media of claim 8,
where the executable code is generated based on a graphi-
cal model,
where the one or more instructions to output the formatted
coverage information include:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
provide a link, that when selected, associates the cov-
erage information with a portion of the graphical
model, and
where the instructions further comprise:
one or more instructions that, when executed by the one
or more processors, cause the one or more processors
to:
determine a selection of the link, and
associate the coverage information with the portion of
the graphical model based on the selection.
14. A method comprising:
obtaining a coverage result for executable code that con-
tains variable signals,
the coverage result identifying elements of the variable
signals that were processed during an execution of the
executable code, and
the obtaining the coverage result being performed by a
device;
determining, based on the coverage result, information that
indicates one or more occurrence counts for one or more
dimensions of the variable signals,
the determining the information that indicates the one or
more occurrence counts being performed by the
device;
modifying the executable code based on the information
that indicates the one or more occurrence counts,
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the modifying the executable code being performed by
the device; and
processing the variable signals based on the modified
executable code,
the processing the variable signals being performed by
the device.
15. The method of claim 14, where modifying the execut-
able code includes:
modifying the executable code to increase a level of effi-
ciency associated with accessing a memory during an
execution of the modified executable code relative to a
level of efficiency associated with accessing the memory
during the execution of the executable code.
16. The method of claim 14, further comprising:
determining variances in a dimension of the variable sig-
nals processed during the execution of the executable
code,
where modifying the executable code includes:
modifying the executable code further based on the
variances in the dimension of the variable signals
processed during the execution of the executable
code.
17. The method of claim 14, further comprising:
determining, based on the coverage result, coverage mea-
surements for the elements of the variable signals that
were processed during the execution of the executable
code; and
determining, based on accounting for the elements of the
variable signals, coverage measurements for the ele-
ments of the variable signals that were not processed
during the execution of the executable code,
where modifying the executable code includes:
modifying the executable code based on the coverage
measurements of the elements of the variable sig-
nals that were processed during the execution of the
executable code.
18. The method of claim 14, further comprising:
generating the executable code based on a graphical model.
19. The method of claim 14, further comprising:
superimposing the coverage result on a graphical model.
20. The method of claim 14, further comprising:
generating a report that includes the coverage result, and
providing the report to a receiving application that deter-
mines a performance of the executable code related to
processing the variable signals.
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